Where ever you live in the world you should apply the information on working your bees that is given below when the weather conditions in your area are right. So take notes and be ready.

*****Check out the new easy to use book link above*****

Cletus Notes

At this time of year (December) here at Lone Star Farms in Bryan, Texas, we are concerned about the mite count, the hive population and the food stores for the bees to winter on. As most of you know by now, we never place any kind of chemical in our hives. By using hygienic queens along with good management techniques, there is never a need to use chemicals.

It’s important for everyone to understand that this time of year (In the South) it’s not unusual for the hives mite count to appear higher than normal. The breeding mites have no place to retreat to, because there are fewer brood cells available for them to breed/hide in. That means the mites are out in the open. This would be a great time to perform a powdered sugar treatment because of the mite’s exposer.

 We take the time to equalize our hives and to unite hives that have smaller hive populations. By doing so, our winter lose is less than 1% and our hives are strong in early spring for the honey flow. Our bees will go through the winter with a minimum of thirty-five to forty pounds of food stores. Those of you who live in much colder places should make sure your bees have a higher amount of stores available to them.

There are two types of beekeepers out there. There’s the psychic beekeeper that never has to open/work the hive in order to know what’s going on and then there’s the beekeeper who actually works their hive. If you want to be successful in beekeeping, be the beekeeper who works their hive. Enjoy your bees!



Bacterial Imbalances Can Mean Bad News for Honey Bees

By Jan Suszkiw
USDA - ARS News Service

A team of
U.S. Department of Agriculture(USDA) scientists and their collaborators have established a strong link between honey bee health and the effects of diet on bacteria that live in the guts of these important insect pollinators.

In a study published in the November issue of
Molecular Ecology, the team fed caged honey bees one of four diets: fresh pollen, aged pollen, fresh supplements, and aged supplements. After seven days, the team euthanized and dissected the bees and used next-generation sequencing methods to identify the bacteria communities that had colonized the bees' digestive tract.

The team also compared the thorax (flight muscle) weight and size of each group's hypopharyngeal glands as measures of the diets' effects on bee growth and development. The glands enable nurse bees to produce "royal jelly," a substance that's fed to developing larvae, ensuring the hive's continued survival. The flight muscle weight represents the potential for work after the nurse bee transitions into the role of forager.

In general, bees given fresh pollen or fresh supplements fared better than bees given pollen or supplements that had first been aged for 21 days, reports
Kirk Anderson, senior author and a microbial ecologist with USDA's Agricultural Research Service(ARS) in Tucson, Arizona.

Bees fed fresh diets suffered fewer deaths, made better use of energy for growth, and had lower levels of gut pathogens such as Nosema ceranae, according to Anderson and co-authors
University of Arizonagraduate student Patrick Maes, ARS lab technician Brendon Mott, and Randy Oliver of Scientificbeekeeping.com

In the study, the nutritional value of pollen lasted longer than that of supplement. Bees consumed significantly more aged supplement than aged pollen, but this didn't translate into long-term benefits. For example, bees consuming aged supplement had plump nurse glands but suffered significant losses in flight muscle, suggesting that nutrition diverted to feed developing larva came at a significant cost to the bees' own adult development. Poor development, in turn, can translate to early mortality or inefficient food collection when these nurse bees transition to the role of foragers.

Anderson says the effects of diet on gut bacteria populations (or "gut microbiome") are poorly understood but warrant study because of the implications for honey bee health and the insect's importance as a chief pollinator of 100-plus flowering crops. Put another way, consumers owe one in every three bites of food they eat to the work of honey bees and other pollinators.


New Findings About the Honey Bee
Infecting Deformed Wing Virus

The honey bee Apis melliferaplays an important role for the pollination of fruit and vegetable plants, besides its significance for the production of honey and wax. Losses of entire bee colonies during winter have economic and -- in particular -- ecological consequences as pollinators are missing in spring during blossom. Apiculture in North America and Europe is especially affected by partly massive losses. Only during the winter months of 2014/2015, up to fifty per cent of all bee colonies in some Austrian regions collapsed.

The main trigger of this bee mortality does not seem to be the use of pesticides in modern agriculture. Many studies have shown that the survival of bee colonies strongly depends on the infestation with Varroa mites, widespread blood-sucking parasites, and the transmission of deformed wing virus by these mites. A research group from the Institute of Virology at the University of Veterinary Medicine, Vienna has developed a new laboratory system, which enabled them to make an important step forward in the investigation of the virus. By using a molecular clone, they have simulated the course of disease in a targeted way under laboratory conditions.

Artificial viral genomes of deformed wing virus

Up to now, scientists have only used samples of the deformed wing virus, which they had taken from infected bees. "However, mixed and multiple infections can bias the results of such tests", stated lead author Benjamin Lamp. For the new test system, the researchers used artificial genetic material instead of natural samples of the deformed wing virus, in order to clearly correlate the course of disease to the virus."Initially, we amplify the genetic RNA material of a virus and save it as a DNA copy in a vector, a specific transport vehicle for genetic material. The resulting molecular clone enables us to produce artificial viruses, which are identical and genetically defined," explained Lamp. Insects infected with the artificial virus showed the same symptoms such as discoloration, dwarfism, death or the eponymous deformation of the wing that also occur in natural infections. Thus, it could be unambiguously shown that these symptoms are caused by the deformed wing virus.

Deformed wing virus detected in gland tissue

Besides the infection with the viral RNA under controlled laboratory conditions, also an unbiased picture of the disease process could be shown. The scientists infected not only fully developed bees with the artificial genetic material of the virus, but also larvae and pupae. During the pupal stage, Lamp and his team analyzed the target tissues and the host cells -- the cells the virus preferably infects. The scientists found viral antigens -- the specific protein molecules of the deformed wing virus - in all body areas. However, neural, gland and connective tissue cells were particularly affected. "The high concentrations of viral proteins -- the antigens -- in the glands could also indicate an oral transmission of the virus from one bee to another in the hive," explained Professor Till Rümenapf, last author and head of the Institute of Virology at the University of Veterinary Medicine, Vienna. This could explain why the virus also remains present in the hives if it is not transmitted by the Varroa mite. However, no viral proteins were detected in muscle and blood cells.

Various applications of the new method

By using the molecular clone, different aspects of the viral life-cycle could be simulated, manipulated and studied under laboratory conditions. This concerns the transmission of the virus by the Varroa mite, the course of the infection and the viral replication in different stages of development of honey bees. Controlled experimental conditions will enable the development of new strategies in order to effectively reduce the losses of bee colonies caused by the virus. The described experiments involved only one DWV strain, but the method can also be used for other strains. "In many cases, a bee is not only infected with one virus species. Our test system provides a tool to find out, which viruses are especially harmful and how viruses behave in multiple infections," explained Lamp. "Thus, we can develop targeted strategies against disease-causing viruses."

About the deformed wing virus

The deformed wing virus (DWV) belongs to the family of Iflaviridae. These viruses are so-called RNA viruses. Their genetic material only consists of one ribonucleotide strand, unlike the prevailing double-stranded DNA in mammals. In most but not all cases, infections with the deformed wing virus are bound to an infestation of a hive with the Varroa mite. "The virus persists in the hives and can even be detected if there are no parasites in the hive," explained Benjamin Lamp.


Bees Use Multiple Cues in
Hunt for Pollen

University of Exeter

Bees use a variety of senses and memory of previous experiences when deciding where to forage for pollen, research by the University of Exeter suggests.

The researchers believe pollen-collecting bees do not base their foraging decisions on taste alone, but instead make an "overall sensory assessment" of their experience at a particular flower.

Bees typically do not eat pollen when they collect it from flowers, but carry it back to the nest via special "sacs" on their legs or hairs on their body.

This makes it difficult to understand how bees judge whether the pollen a flower produces is nutritious enough for their young.

Indeed, researchers have been puzzled for a long time as to what exactly bees look for when they collect pollen from flowers.

Co-author Dr Natalie Hempel de Ibarra, expert in insect neuroethology at Exeter's Centre for Research in Animal Behaviour, said: "It seems that bees don't just respond to a single nutritional compound in pollen, such as crude protein content, but to a range of sensory cues in pollen and flowers.

"They also form memories for locations and types of flowers that they have visited which affect their foraging decisions.

"We need more research that considers the behaviour and neurobiology of bees to understand when and why they prefer some plants and some pollen over others.

"A breakthrough in this area could advance our efforts in both biodiversity conservation and crop production."

The review, published in the journal Functional Ecology, examines existing evidence on how bees use their senses, previous experience and - in the case of social bees - feedback from the nest to decide where to gather pollen.

First author Dr Elizabeth Nicholls, a former PhD student at the University of Exeter and now a Postdoctoral Research Fellow at the University of Sussex, said: "Our review is unique in considering pollen foraging from an individual bee's perspective, asking which senses bees use to decide which flowers are worth visiting.

"In our review we suggest that although bees may taste pollen during collection and use this nutritional information to guide their choices, they are also likely to pay attention to the strong odour and visual appearance of both pollen and the flower itself.

"For bees that live together in colonies, information passed on from the other bees in the nest, either via chemical cues or even special 'dances', may also be important in influencing their pollen-collecting behaviour."

The University of Exeter is a major hub for bee and pollination research and currently advertising several postgraduate research projects.